Abstract

We present a learning model predictive controller (LMPC) for autonomous racing. We model the autonomous racing problem as a minimum time iterative control task, where an iteration corresponds to a lap. The system trajectory and input sequence of each lap are stored and used to systematically update the controller for the next lap. In the proposed approach, the race time does not increase at each iteration. The first contribution is to propose a local LMPC which reduces the computational burden associated with existing LMPC strategies. In particular, we show how to construct a local safe set and approximation to the value function, using a subset of the stored data. The second contribution is to present a system identification strategy for the autonomous racing iterative control task. We use data from previous iterations and the vehicle’s kinematic equations of motion to build an affine time-varying prediction model. The effectiveness of the proposed strategy is demonstrated by experimental results on the Berkeley Autonomous Race Car (BARC) platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.