Abstract

The recent years have witnessed a surge of interests of learning high-dimensional correspondence, which is important for both machine learning and neural computation community. Manifold learning---based researches have been considered as one of the most promising directions. In this paper, by analyzing traditional methods, we summarized a new framework for high-dimensional correspondence learning. Within this framework, we also presented a new approach, Local Approximation Maximum Variance Unfolding. Compared with other machine learning---based methods, it could achieve higher accuracy. Besides, we also introduce how to use the proposed framework and methods in a concrete application, cross-system personalization (CSP). Promising experimental results on image alignment and CSP applications are proposed for demonstration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.