Abstract
There are two mainstream strategies for image-text matching at present. The one, termed as joint embedding learning, aims to model the semantic information of both image and sentence in a shared feature subspace, which facilitates the measurement of semantic similarity but only focuses on global alignment relationship. To explore the local semantic relationship more fully, the other one, termed as metric learning, aims to learn a complex similarity function to directly output score of each image-text pair. However, it significantly suffers from more computation burden at retrieval stage. In this paper, we propose a hierarchically joint embedding model to incorporate the local semantic relationship into a joint embedding learning framework. The proposed method learns the shared local and global embedding spaces simultaneously, and models the joint local embedding space with respect to specific local similarity labels which are easy to access from the lexical information of corpus. Unlike the methods based on metric learning, we can prepare the fixed representations of both images and sentences by concatenating the normalized local and global representations, which makes it feasible to perform the efficient retrieval. And experiments show that the proposed model can achieve competitive performance when compared to the existing joint embedding learning models on two publicly available datasets Flickr30k and MS-COCO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.