Abstract
Non-Euclidean property of graph structures has faced interesting challenges when deep learning methods are applied. Graph convolutional networks (GCNs) can be regarded as one of the successful approaches to classification tasks on graph data, although the structure of this approach limits its performance. In this work, a novel representation learning approach is introduced based on spectral convolutions on graph-structured data in a semisupervised learning setting. Our proposed method, COnvOlving cLiques (COOL), is constructed as a neighborhood aggregation approach for learning node representations using established GCN architectures. This approach relies on aggregating local information by finding maximal cliques. Unlike the existing graph neural networks which follow a traditional neighborhood averaging scheme, COOL allows for aggregation of densely connected neighboring nodes of potentially differing locality. This leads to substantial improvements on multiple transductive node classification tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.