Abstract

We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We study fundamental trade-offs between the number of measurements (sample complexity), the complexity of the graph class, and the probability of error by first deriving a necessary condition (fundamental limit) on the number of measurements. Then, by considering a two-stage recovery scheme, we give a sufficient condition for recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdös-Rényi (n, p) class, the sample complexity derived from the fundamental trade-offs is tight up to multiplicative factors. In addition, we design and implement a polynomial-time (in n) algorithm based on the two-stage recovery scheme. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness of the proposed algorithm for accurate topology and parameter recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call