Abstract

Graph Neural Networks has been proved to be successful in learning the latent vector representation for local structures. While applying this technique to some real-world tasks, such as property prediction for molecules, a graph-level representation generator should be required to integrate all these local-structural embeddings. Limited by varying graph scale and the absence of node order, existing graph-level representation generation approaches usually adopt rough ways, e.g., compressing all local-structural embeddings into a single vector, which cannot simultaneously retain both the local- and global-structural information in graph-level representations. To address this problem, this paper introduces a novel and more powerful approach to learn graph-level representation from local-structural distribution. Firstly, our approach employs a batch strategy to discretize the embeddings of local structures by their structural semantics, which can provide interactive information to approximately align the local-structural embeddings for varying graphs. According to Wasserstein metric, the aligned structural information is beneficial to capture the similarity among graphs. Then, our approach further integrates these aligned local-structural embeddings to construct a resolution-controllable structural histogram as the graph-level representation. Without over-compression, more local-structural information can be preserved. The experimental results show that our approach substantially outperformed the baselines on a range of real-world datasets in both graph classification and regression tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.