Abstract

Automatic generation of 3D visual content is a fundamental problem that sits at the intersection of visual computing and artificial intelligence. So far, most existing works have focused on geometry synthesis. In contrast, advances in automatic synthesis of color information, which conveys rich semantic information of 3D geometry, remain rather limited. In this paper, we propose to learn a generative model that maps a latent color parameter space to a space of colorizations across a shape collection. The colorizations are diverse on each shape and consistent across the shape collection. We introduce an unsupervised approach for training this generative model and demonstrate its effectiveness across a wide range of categories. The key feature of our approach is that it only requires one colorization per shape in the training data, and utilizes a neural network to propagate the color information of other shapes to train the generative model for each particular shape. This characteristics makes our approach applicable to standard internet shape repositories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.