Abstract

Generative model learning is one of the key problems in machine learning and computer vision. Currently the use of generative models is limited due to the difficulty in effectively learning them. A new learning framework is proposed in this paper which progressively learns a target generative distribution through discriminative approaches. This framework provides many interesting aspects to the literature. From the generative model side: (1) A reference distribution is used to assist the learning process, which removes the need for a sampling processes in the early stages. (2) The classification power of discriminative approaches, e.g. boosting, is directly utilized. (3) The ability to select/explore features from a large candidate pool allows us to make nearly no assumptions about the training data. From the discriminative model side: (1) This framework improves the modeling capability of discriminative models. (2) It can start with source training data only and gradually "invent" negative samples. (3) We show how sampling schemes can be introduced to discriminative models. (4) The learning procedure helps to tighten the decision boundaries for classification, and therefore, improves robustness. In this paper, we show a variety of applications including texture modeling and classification, non-photorealistic rendering, learning image statistics/denoising, and face modeling. The framework handles both homogeneous patterns, e.g. textures, and inhomogeneous patterns, e.g. faces, with nearly an identical parameter setting for all the tasks in the learning stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call