Abstract
Reinforcement Learning (RL) in complex environments presents many challenges: agents require learning concise representations of both environments and behaviors for efficient reasoning and generalizing experiences to new, unseen situations. However, RL approaches can be sample-inefficient and difficult to scale, especially in long-horizon sparse reward settings. To address these issues, the goal of my doctoral research is to develop methods that automatically construct semantically meaningful state and temporal abstractions for efficient transfer and generalization. In my work, I develop hierarchical approaches for learning transferable, generalizable knowledge in the form of symbolically represented options, as well as for integrating search techniques with RL to solve new problems by efficiently composing the learned options. Empirical results show that the resulting approaches effectively learn and transfer knowledge, achieving superior sample efficiency compared to SOTA methods while also enhancing interpretability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.