Abstract

An effective 3D descriptor should be invariant to different geometric transformations, such as scale and rotation, robust to occlusions and clutter, and capable of generalising to different application domains. We present a simple yet effective method to learn general and distinctive 3D local descriptors that can be used to register point clouds that are captured in different domains. Point cloud patches are extracted, canonicalised with respect to their local reference frame, and encoded into scale and rotation-invariant compact descriptors by a deep neural network that is invariant to permutations of the input points. This design is what enables our descriptors to generalise across domains. We evaluate and compare our descriptors with alternative handcrafted and deep learning-based descriptors on several indoor and outdoor datasets that are reconstructed by using both RGBD sensors and laser scanners. Our descriptors outperform most recent descriptors by a large margin in terms of generalisation, and also become the state of the art in benchmarks where training and testing are performed in the same domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.