Abstract

Markov random field (MRF) models are a popular tool for vision and image processing. Gaussian MRF models are particularly convenient to work with because they can be implemented using matrix and linear algebra routines. However, recent research has focused on on discrete-valued and non-convex MRF models because Gaussian models tend to over-smooth images and blur edges. In this paper, we show how to train a Gaussian conditional random field (GCRF) model that overcomes this weakness and can outperform the non-convex field of experts model on the task of denoising images. A key advantage of the GCRF model is that the parameters of the model can be optimized efficiently on relatively large images. The competitive performance of the GCRF model and the ease of optimizing its parameters make the GCRF model an attractive option for vision and image processing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.