Abstract

the accuracy of the new multi-fidelity NN for approximating some standard benchmark functions but also a 20-dimensional function that is not easy to approximate with other methods, e.g. Gaussian process regression. Subsequently, we extend the recently developed physics-informed neural networks (PINNs) to be trained with multi-fidelity data sets (MPINNs). MPINNs contain four fully-connected neural networks, where the first one approximates the low-fidelity data, while the second and third construct the correlation between the low- and high-fidelity data and produce the multi-fidelity approximation, which is then used in the last NN that encodes the partial differential equations (PDEs). Specifically, by decomposing the correlation into a linear and nonlinear part, the present model is capable of learning both the linear and complex nonlinear correlations between the low- and high-fidelity data adaptively. By training the MPINNs, we can: (1) obtain the correlation between the low- and high-fidelity data, (2) infer the quantities of interest based on a few scattered data, and (3) identify the unknown parameters in the PDEs. In particular, we employ the MPINNs to learn the hydraulic conductivity field for unsaturated flows as well as the reactive models for reactive transport. The results demonstrate that MPINNs can achieve relatively high accuracy based on a very small set of high-fidelity data. Despite the relatively low dimension and limited number of fidelities (two-fidelity levels) for the benchmark problems in the present study, the proposed model can be readily extended to very high-dimensional regression and classification problems involving multi-fidelity data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.