Abstract

Palmprint recognition, as a new branch of biometric technology, has attracted much attention in recent years. Various palmprint representations have been proposed for recognition. Gabor feature has been recognized as one of the most effective representations for palmprint recognition, where Gabor phase and orientation feature representations are extensively studied. In this paper, we explore a novel Gabor magnitude feature-based method for palmprint recognition. The novelties are as follows: First, we propose an illumination normalization method for palmprint images to decrease the influence of illumination variations caused by different sensors and lighting conditions. Second, we propose to use Gabor magnitude features for palmprint representation. Third, we utilize AdaBoost learning to extract most effective features and apply Local Discriminant Analysis (LDA) to reduce the dimension further for palmprint recognition. Experimental results on three large palmprint databases demonstrate the effectiveness of proposed method. Compared with state-of-the-art Gabor-based methods, our method achieves higher accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.