Abstract
Fuzzy predicates have been incorporated into machine learning and data mining to extend the types of data relationships that can be represented, to facilitate the interpretation of rules in linguistic terms, and to avoid unnatural boundaries in partitioning attribute domains. The confidence of an association is classically measured by the co-occurrence of attributes in tuples in the database. The semantics of fuzzy rules, however, is not co-occurrence but rather graduality or certainty and is determined by the implication operator that defines the rule. In this paper we present a learning algorithm, based on inductive logic programming, that simultaneously learns the semantics and evaluates the validity of fuzzy rules. The learning algorithm selects the implication that maximizes rule confidence while trying to be as informative as possible. The use of inductive logic programming increases the expressive power of fuzzy rules while maintaining their linguistic interpretability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.