Abstract

Although the traditional rough set theory has been a powerful mathematical tool for modeling incompleteness and vagueness, its performance in dealing with initial fuzzy data is usually poor. This paper makes an attempt to improve its performance by extending the traditional rough set approach to the fuzzy environment. The extension is twofold. One is knowledge representation and the other is knowledge reduction. First, we provide new definitions of fuzzy lower and upper approximations by considering the similarity between the two objects. Second, we extend a number of underlying concepts of knowledge reduction (such as the reduct and core) to the fuzzy environment and use these extensions to propose a heuristic algorithm to learn fuzzy rules from initial fuzzy data. Finally, we provide some numerical experiments to demonstrate the feasibility of the proposed algorithm. One of the main contributions of this paper is that the fundamental relationship between the reducts and core of rough sets is still pertinent after the proposed extension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.