Abstract
One of the optimal approaches for learning a Takagi Sugeno-based fuzzy neural network model is the conjugate gradient method proposed in this research. For the PRP and the LS approaches, a novel algorithm based on the Liu-Storey (LS) approach is created to overcome the slow convergence. The developed method becomes descent and convergence by assuming some hypothesis. The numerical results show that the developed method for classifying data is more efficient than the other methods, as shown in Table (2), where the new method outperforms the others in terms of average training time, average training accuracy, average test accuracy, average training MSE, and average test MSE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.