Abstract

The problem of learning universally quantified function free first order Horn expressions is studied. Several models of learning from equivalence and membership queries are considered, including the model where interpretations are examples (Learning from Interpretations), the model where clauses are examples (Learning from Entailment), models where extensional or intentional background knowledge is given to the learner (as done in Inductive Logic Programming), and the model where the reasoning performance of the learner rather than identification is of interest (Learning to Reason). We present learning algorithms for all these tasks for the class of universally quantified function free Horn expressions. The algorithms are polynomial in the number of predicate symbols in the language and the number of clauses in the target Horn expression but exponential in the arity of predicates and the number of universally quantified variables. We also provide lower bounds for these tasks by way of characterising the VC-dimension of this class of expressions. The exponential dependence on the number of variables is the main gap between the lower and upper bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.