Abstract

As the demand for seed accelerators grows, so does the complexity of their evaluations of numerous startup applications. This paper introduces a novel two-phase data-driven framework for startup performance prediction. Phase 1 extracts founding team-level and venture-level features applicable to early-stage startups for success prediction. Phase 2 further engineers cohort-level features to predict the success of accelerator-admitted startups. We demonstrate the utility of our framework by leveraging machine learning methods coupled with real-world data of 35,647 startups (accelerator intakes: 763). We achieve high predictive accuracy and produce explainable results. We make methodological contributions to startup competitor detection and industry categorization. The key insight of our study is that member success largely depends on cohort-level features such as shared industries with different members and industry similarity to the accelerator's past portfolio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.