Abstract

Vulnerability prediction refers to the problem of identifying system components that are most likely to be vulnerable. Typically, this problem is tackled by training binary classifiers on historical data. Unfortunately, recent research has shown that such approaches underperform due to the following two reasons: a) the imbalanced nature of the problem, and b) the inherently noisy historical data, i.e., most vulnerabilities are discovered much later than they are introduced. This misleads classifiers as they learn to recognize actual vulnerable components as non-vulnerable. To tackle these issues, we propose TROVON, a technique that learns from known vulnerable components rather than from vulnerable and non-vulnerable components, as typically performed. We perform this by contrasting the known vulnerable, and their respective fixed components. This way, TROVON manages to learn from the things we know, i.e., vulnerabilities, hence reducing the effects of noisy and unbalanced data. We evaluate TROVON by comparing it with existing techniques on three security-critical open source systems, i.e., Linux Kernel, OpenSSL, and Wireshark, with historical vulnerabilities that have been reported in the National Vulnerability Database (NVD). Our evaluation demonstrates that the prediction capability of TROVON significantly outperforms existing vulnerability prediction techniques such as Software Metrics, Imports, Function Calls, Text Mining, Devign, LSTM, and LSTM-RF with an improvement of 40.84% in Matthews Correlation Coefficient (MCC) score under Clean Training Data Settings, and an improvement of 35.52% under Realistic Training Data Settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.