Abstract

As building structures in different parts of the world become increasingly exposed to extreme events, there has been a notable research and professional effort to ensure the design of more robust buildings which are insensitive to local failures. At the same time, several works performed in the field of forensic structural engineering have contributed to advancing knowledge on causes and risk factors of structural failure. This includes the creation of several collapse databases, most of which focus mainly on the underlying hazards causing failure. While such databases have provided invaluable insights for preventing structural failures, they do not lend themselves well to the analysis of how failure propagates, which can be useful for improving the progressive collapse resistance of buildings. To this end, a novel database of building collapses is presented in this article which systematically collects information on the hazards, initial failures and their corresponding propagation mechanisms. In addition, key information related to the context and the consequences of collapse is also gathered. Based on the information compiled in the database, this article provides an in-depth analysis of the most commonly occurring initial failures and propagation mechanisms, with significant conclusions extracted from the study of past collapses. The application of different consequence models for estimating fatalities and reconstruction costs is also presented, leading to recommendations for improving such models and related data collection strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call