Abstract

Viruses feature an evolutionary shaped minimal genome that is obligately dependent on the cellular transcription and translation machinery for propagation. To suppress host cell immune responses and ensure efficient replication, viruses employ numerous tactics to favor viral gene expression and protein synthesis. This necessitates a carefully balanced network of virus- and host-encoded components, of which the RNA-based regulatory mechanisms have emerged as particularly interesting albeit insufficiently studied, especially in unicellular organisms such as archaea, bacteria, and yeasts. Here, recent advances that further our understanding of RNA-based translation regulation, mainly through post-transcriptional chemical modification of ribonucleosides, codon usage, and (virus-encoded) transfer RNAs, will be discussed in the context of viral infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.