Abstract

Understanding the relationship between drought and population dynamics is increasingly important, particularly in areas where high population growth corresponds with increasing drought risk due to climate change. We examine the relationship between drought events and population dynamics using a stylized hydrology-demography model that has been calibrated to simulate plausible feedbacks for the population decline of the Ancient Maya of Central America. We employ a deterministic and a stochastic approach.We find that the impact of drought increases abruptly once a critical threshold of population density is exceeded. The critical threshold depends on the intensity and duration of the drought as well as on the level of technology adopted by society, the extent of markets and societal behavior. The simulations show that, for a society to be as food secure post-climate change as they are pre-climate change, strategies would have to be adopted to not only increase the region's capacity to provide sufficient resources for its growing population, but also to buffer the impact of a drier climate on productivity. This study provides suggestions on how technological, societal and economic development can modify the system to mitigate the impacts of climate change on the human population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.