Abstract

Many natural optimization problems are NP-hard, which implies that they are probably hard to solve exactly in the worst-case. However, it suffices to get reasonably good solutions for all (or even most) instances in practice. This paper presents a new algorithm for computing approximate solutions in Θ(N) for the maximum exact 3-satisfiability (MAX-E-3-SAT) problem by using supervised learning methodology. This methodology allows us to create a learning algorithm able to fix Boolean variables by using local information obtained by the Survey Propagation algorithm. By performing an accurate analysis, on random conjunctive normal form instances of the MAX-E-3-SAT with several Boolean variables, we show that this new algorithm, avoiding any decimation strategy, can build assignments better than a random one, even if the convergence of the messages is not found. Although this algorithm is not competitive with state-of-the-art maximum satisfiability solvers, it can solve substantially larger and more complicated problems than it ever saw during training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.