Abstract
Saliency detection with light field images is becoming attractive given the abundant cues available, however, this comes at the expense of large-scale pixel level annotated data which is expensive to generate. In this paper, we propose to learn light field saliency from pixel-level noisy labels obtained from unsupervised hand crafted featured-based saliency methods. Given this goal, a natural question is: can we efficiently incorporate the relationships among light field cues while identifying clean labels in a unified framework? We address this question by formulating the learning as a joint optimization of intra light field features fusion stream and inter scenes correlation stream to generate the predictions. Specially, we first introduce a pixel forgetting guided fusion module to mutually enhance the light field features and exploit pixel consistency across iterations to identify noisy pixels. Next, we introduce a cross scene noise penalty loss for better reflecting latent structures of training data and enabling the learning to be invariant to noise. Extensive experiments on multiple benchmark datasets demonstrate the superiority of our framework showing that it learns saliency prediction comparable to state-of-the-art fully supervised light field saliency methods. Our code is available at h t tps://github.com/ OLobbCode/NoiseLF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.