Abstract

In this paper, we investigate the learning issue in the adaptive neural network (NN) output feedback control of nonlinear systems in Brunovsky canonical form with unknown affine term. With only output measurements, a high-gain observer (HGO) is employed to estimate the derivatives of the system output which may be associated with the generation of peaking phenomenon. The adverse effect of peaking on learning and its elimination strategies are analyzed. When the gain of HGO is chosen too high, it may cause the failure of learning from the unknown closed-loop system dynamics. Hence, the gain of HGO is not chosen too high to relieve peaking and guarantee the accuracy of the estimated system states. Then, learning from the unknown closed-loop system dynamics can be achieved. When repeating the same or similar control tasks, a neural learning controller is presented which can effectively recall and reuse the learned knowledge to guarantee the output tracking performance. Finally, simulation results demonstrate the effectiveness of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.