Abstract
Imitation learning enables robots to learn from demonstrations. Previous imitation learning algorithms usually assume access to optimal expert demonstrations. However, in many real-world applications, this assumption is limiting. Most collected demonstrations are not optimal or are produced by an agent with slightly different dynamics. We therefore address the problem of imitation learning when the demonstrations can be sub-optimal or be drawn from agents with varying dynamics. We develop a metric composed of a feasibility score and an optimality score to measure how useful a demonstration is for imitation learning. The proposed score enables learning from more informative demonstrations, and disregarding the less relevant demonstrations. Our experiments on four environments in simulation and on a real robot show improved learned policies with higher expected return.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.