Abstract
Query auto completion (QAC) models recommend possible queries to web search users when they start typing a query prefix. Most of today’s QAC models rank candidate queries by popularity (i.e., frequency), and in doing so they tend to follow a strict query matching policy when counting the queries. That is, they ignore the contributions from so-called homologous queries, queries with the same terms but ordered differently or queries that expand the original query. Importantly, homologous queries often express a remarkably similar search intent. Moreover, today’s QAC approaches often ignore semantically related terms. We argue that users are prone to combine semantically related terms when generating queries.We propose a learning to rank-based QAC approach, where, for the first time, features derived from homologous queries and semantically related terms are introduced. In particular, we consider: (i) the observed and predicted popularity of homologous queries for a query candidate; and (ii) the semantic relatedness of pairs of terms inside a query and pairs of queries inside a session. We quantify the improvement of the proposed new features using two large-scale real-world query logs and show that the mean reciprocal rank and the success rate can be improved by up to 9% over state-of-the-art QAC models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.