Abstract

Action observation can facilitate motor skill learning and lead to a memory trace in motor representations of action. However, it remains unclear whether the action itself or the goal of the action drive changes in motor representations after learning by observation. We performed two experiments. In Experiment 1, using serial reaction time task and transcranial magnetic stimulation, we showed that observation of right-hand actions during skill learning only increased left motor cortical excitability, leading to behavioral gains in the same hand as the observed hand. In contrast, observing a sequence of visual cue positions devoid of hand action increases motor cortical excitability in both hemispheres and facilitates motor skill learning in the right hand (Experiment 1) and left hand for a mirror-symmetric sequence (Experiment 2). We propose that the encoding of observed movements maps onto motor representations of the same action to form a limb-specific motor memory, whereas the learning of spatial goals forms memory traces in the motor representations in both hemispheres to prepare for potential action in either hand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.