Abstract

This study addresses the problem of Chinese microblog opinion retrieval, which aims to retrieve opinionated Chinese microblog posts relevant to a target specified by a user query. Existing studies have shown that lexicon-based approaches employed online public sentiment resources to rank sentimentwords relying on the document features. However, this approach could not be effectively applied to microblogs that have typical user-generated content with valuable contextual information: “user–user” interpersonal interactions and “user–post/comment” intrapersonal interactions. This contextual information is very helpful in estimating the strength of sentiment words more accurately. In this study, we integrate the social contextual relationships among users, posts/comments, and sentiment words into a mutual reinforcement model and propose a unified three-layer heterogeneous graph, on which a random walk sentiment word weighting algorithm is presented to measure the strength of opinion of the sentiment words. Furthermore, the weights of sentiment words are incorporated into a lexicon-based model for Chinese microblog opinion retrieval. Comparative experiments are conducted on a Chinese microblog corpus, and the results show that our proposed mutual reinforcement model achieves significant improvement over previous methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.