Abstract

Background and ObjectiveSimulation of diverse lesions in images is proposed and applied to overcome the scarcity of labeled data, which has hindered the application of deep learning in medical imaging. However, most of current studies focus on generating samples with class labels for classification and detection rather than segmentation, because generating images with precise masks remains a challenge. Therefore, we aim to generate realistic medical images with precise masks for improving lesion segmentation in mammagrams. MethodsIn this paper, we propose a new framework for improving X-ray breast mass segmentation performance aided by generated adversarial lesion images with precise masks. Firstly, we introduce a conditional generative adversarial network (cGAN) to learn the distribution of real mass images as well as a mapping between images and corresponding segmentation masks. Subsequently, a number of lesion images are generated from various binary input masks using the generator in the trained cGAN. Then the generated adversarial samples are concatenated with original samples to produce a dataset with increased diversity. Furthermore, we introduce an improved U-net and train it on the previous augmented dataset for breast mass segmentation. ResultsTo demonstrate the effectiveness of our proposed method, we conduct experiments on publicly available mammogram database of INbreast and a private database provided by Nanfang Hospital in China. Experimental results show that an improvement up to 7% in Jaccard index can be achieved over the same model trained on original real lesion images. ConclusionsOur proposed method can be viewed as one of the first steps toward generating realistic X-ray breast mass images with masks for precise segmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call