Abstract

In formal language theory, finite-state transducers are well-know models for simple mappings between two languages. Even if more powerful, recursive models can be used to account for more complex mappings, it has been argued that the input-output relations underlying most usual natural language pairs can essentially be modeled by finite-state devices. Moreover, the relative simplicity of these mappings has recently led to the development of techniques for learning finite-state transducers from a training set of input-output sentence pairs of the languages considered. In the last years, these techniques have lead to the development of a number of machine translation systems. Under the statistical statement of machine translation, we overview here how modeling, learning and search problems can be solved by using stochastic finite-state transducers. We also review the results achieved by the systems we have developed under this paradigm. As a main conclusion of this review we argue that, as task complexity and training data scarcity increase, those systems which rely more on statistical techniques tend produce the best results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.