Abstract
Numerical abstract domains are a key component of modern static analyzers. Despite recent advances, precise analysis with highly expressive domains remains too costly for many real-world programs. To address this challenge, we introduce a new data-driven method, called LAIT, that produces a faster and more scalable numerical analysis without significant loss of precision. Our approach is based on the key insight that sequences of abstract elements produced by the analyzer contain redundancy which can be exploited to increase performance without compromising precision significantly. Concretely, we present an iterative learning algorithm that learns a neural policy that identifies and removes redundant constraints at various points in the sequence. We believe that our method is generic and can be applied to various numerical domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.