Abstract
We consider the problem of learning from a fallible expert that answers all queries about a concept, but often gives incorrect answers. The expert can also be thought of as a truth table describing the concept which has been partially corrupted. In order to learn the underlying concept with arbitrarily high precision, we would like to use its structure in order tocorrect most of the incorrect answers. We assume that the expert's errors are uniformly and independently distributed, occur with any fixed probability strictly smaller than 1/2, and are persistent. In particular, we present a polynomial time algorithm using membership queries for correcting and learning fallible Deterministic Finite Automata under the uniform distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.