Abstract

Subregion-dependent differences in the role of the hippocampus in information processing exist. Recently, it has emerged that a special relationship exists between the expression of persistent forms of synaptic plasticity in hippocampal subregions and the encoding of different types of spatial information. Little is known about this type of information processing at CA3 synapses. We report that in freely behaving rats, long-term potentiation (LTP) is facilitated at both mossy fiber (mf)–CA3 and commissural–associational (AC)–CA3 synapses by exploration of a novel (empty) environment. Exploration of large spatial landmarks facilitates long-term depression (LTD) at mf-CA3 synapses and impairs synaptic depression at AC-CA3 synapses. Novel exploration of small environmental features does not facilitate LTD at mf synapses but facilitates persistent LTD at AC synapses. Thus, depending on the quality of the information synaptic plasticity at AC-CA3 and mf-CA3 synapses is differentially modulated. These data suggest that expression of LTP as a result of environmental change is a common property of hippocampal synapses. However, LTD at mf synapses or AC synapses may subserve distinct and separate functions within the CA3 region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call