Abstract

The integration of the latest breakthroughs in bioinformatics technology from one side and artificial intelligence from another side, enables remarkable advances in the fields of intelligent security guard computational biology, healthcare, and so on. Among them, biometrics based automatic human identification is one of the most fundamental and significant research topic. Human gait, which is a biometric features with the unique capability, has gained significant attentions as the remarkable characteristics of remote accessed, robust and security in the biometrics based human identification. However, the existed methods cannot well handle the indistinctive inter-class differences and large intra-class variations of human gait in real-world situation. In this paper, we have developed an efficient spatial-temporal gait features with deep learning for human identification. First of all, we proposed a gait energy image (GEI) based Siamese neural network to automatically extract robust and discriminative spatial gait features for human identification. Furthermore, we exploit the deep 3-dimensional convolutional networks to learn the human gait convolutional 3D (C3D) as the temporal gait features. Finally, the GEI and C3D gait features are embedded into the null space by the Null Foley-Sammon Transform (NFST). In the new space, the spatial-temporal features are sufficiently combined with distance metric learning to drive the similarity metric to be small for pairs of gait from the same person, and large for pairs from different persons. Consequently, the experiments on the world's largest gait database show our framework impressively outperforms state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.