Abstract

With the wide vision and high flexibility, unmanned aerial vehicle (UAV) has been widely used into object tracking in recent years. However, its limited computing capability poses a great challenges to tracking algorithms. On the other hand, Discriminative Correlation Filter (DCF) based trackers have attracted great attention due to their computational efficiency and superior accuracy. Many studies introduce spatial and temporal regularization into the DCF framework to achieve a more robust appearance model and further enhance the tracking performance. However, such algorithms generally set fixed spatial or temporal regularization parameters, which lack flexibility and adaptability under cluttered and challenging scenarios. To tackle such issue, in this letter, we propose a novel DCF tracking model by introducing dynamic spatial regularization weight, which encourage the filter focuses on more reliable region during training stage. Furthermore, our method could optimize the spatial and temporal regularization weight simultaneously using Alternative Direction Method of Multiplies (ADMM) technique method, where each sub-problem has closed-form solution. Through the joint optimization, our tracker could not only suppress the potential distractors but also construct robust target appearance on the basis of reliable historical information. Experiments on two UAV benchmarks have demonstrated that our tracker performs favorably against other state-of-the-art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.