Abstract

The feature models used by existing Thermal InfraRed (TIR) tracking methods are usually learned from RGB images due to the lack of a large-scale TIR image training dataset. However, these feature models are less effective in representing TIR objects and they are difficult to effectively distinguish distractors because they do not contain fine-grained discriminative information. To this end, we propose a dual-level feature model containing the TIR-specific discriminative feature and fine-grained correlation feature for robust TIR object tracking. Specifically, to distinguish inter-class TIR objects, we first design an auxiliary multi-classification network to learn the TIR-specific discriminative feature. Then, to recognize intra-class TIR objects, we propose a fine-grained aware module to learn the fine-grained correlation feature. These two kinds of features complement each other and represent TIR objects in the levels of inter-class and intra-class respectively. These two feature models are constructed using a multi-task matching framework and are jointly optimized on the TIR object tracking task. In addition, we develop a large-scale TIR image dataset to train the network for learning TIR-specific feature patterns. To the best of our knowledge, this is the largest TIR tracking training dataset with the richest object class and scenario. To verify the effectiveness of the proposed dual-level feature model, we propose an offline TIR tracker (MMNet) and an online TIR tracker (ECO-MM) based on the feature model and evaluate them on three TIR tracking benchmarks. Extensive experimental results on these benchmarks demonstrate that the proposed algorithms perform favorably against the state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.