Abstract

We address model-free distributed stabilization of heterogeneous continuous-time linear multi-agent systems using reinforcement learning (RL). Two algorithms are developed. The first algorithm solves a centralized linear quadratic regulator (LQR) problem without knowing any initial stabilizing gain in advance. The second algorithm builds upon the results of the first algorithm, and extends it to distributed stabilization of multi-agent systems with predefined interaction graphs. Rigorous proofs are provided to show that the proposed algorithms achieve guaranteed convergence if specific conditions hold. A simulation example is presented to demonstrate the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.