Abstract

In this paper we present a majority-based method to learn Bayesian network structure from databases distributed over a peer-to-peer network. The method consists of a majority learning algorithm and a majority consensus protocol. The majority learning algorithm discovers the local Bayesian network structure based on the local database and updates the structure once new edges are learnt from neighboring nodes. The majority consensus protocol is responsible for the exchange of the local Bayesian networks between neighboring nodes. The protocol and algorithm are executed in tandem on each node. They perform their operations asynchronously and exhibit local communications. Simulation results verify that all new edges, except for edges with confidence levels close to the confidence threshold, can be discovered by exchange of messages with a small number of neighboring nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.