Abstract
We propose a method for learning disentangled representations of texts that code for distinct and complementary aspects, with the aim of affording efficient model transfer and interpretability. To induce disentangled embeddings, we propose an adversarial objective based on the (dis)similarity between triplets of documents with respect to specific aspects. Our motivating application is embedding biomedical abstracts describing clinical trials in a manner that disentangles the populations, interventions, and outcomes in a given trial. We show that our method learns representations that encode these clinically salient aspects, and that these can be effectively used to perform aspect-specific retrieval. We demonstrate that the approach generalizes beyond our motivating application in experiments on two multi-aspect review corpora.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.