Abstract

Unsupervised disentangled representation learning is one of the foundational methods to learn interpretable factors in the data. Existing learning methods are based on the assumption that disentangled factors are mutually independent and incorporate this assumption with the evidence lower bound. However, our experiment reveals that factors in real-world data tend to be pairwise independent. Accordingly, we propose a new method based on a pairwise independence assumption to learn the disentangled representation. The evidence lower bound implicitly encourages mutual independence of latent codes so it is too strong for our assumption. Therefore, we introduce another lower bound in our method. Extensive experiments show that our proposed method gives competitive performances as compared with other state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.