Abstract
In this paper, a novel algorithm for finding discriminant person-specific facial models is proposed and tested for frontal face verification. The most discriminant features of a person's face are found and a deformable model is placed in the spatial coordinates that correspond to these discriminant features. The discriminant deformable models, for verifying the person's identity, that are learned through this procedure are elastic graphs that are dense in the facial areas considered discriminant for a specific person and sparse in other less significant facial areas. The discriminant graphs are enhanced by a discriminant feature selection method for the graph nodes in order to find the most discriminant jet features. The proposed approach significantly enhances the performance of elastic graph matching in frontal face verification
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Information Forensics and Security
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.