Abstract
We present an extension of reverse engineered Kohn-Sham potentials from a density matrix renormalization group calculation towards the construction of a density functional theory functional via deep learning. Instead of applying machine learning to the energy functional itself, we apply these techniques to the Kohn-Sham potentials. To this end we develop a scheme to train a neural network to represent the mapping from local densities to Kohn-Sham potentials. Finally, we use the neural network to up-scale the simulation to larger system sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.