Abstract

In this paper, we propose deeply supervised scene text detector (DSTD), a framework that can be learned from scratch. Our proposed method mainly addresses two problems. The first one is that state-of-the-art text detectors rely heavily on the off-the-shelf pre-trained models, which leads to several limitations including inflexibility and domain mismatch. The second problem is that unlike general objects, scene text usually appear in arbitrary orientations. Text detection using horizontal bounding boxes is inaccurate. In DSTD, we propose to regress rotated rectangles directly from horizontal default boxes to deal with multi-oriented text. Furthermore, we abandon the heavy pre-trained model from the SSD framework and incorporate dense layer-wise connections, enabling the network to be learned from scratch. The proposed method is evaluated on two public datasets, namely ICDAR2013 and ICDAR2015. Experimental results demonstrate its superiority over several state-of-the-art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.