Abstract

Face anti-spoofing is crucial to prevent face recognition systems from a security breach. Previous deep learning approaches formulate face anti-spoofing as a binary classification problem. Many of them struggle to grasp adequate spoofing cues and generalize poorly. In this paper, we argue the importance of auxiliary supervision to guide the learning toward discriminative and generalizable cues. A CNN-RNN model is learned to estimate the face depth with pixel-wise supervision, and to estimate rPPG signals with sequence-wise supervision. The estimated depth and rPPG are fused to distinguish live vs. spoof faces. Further, we introduce a new face anti-spoofing database that covers a large range of illumination, subject, and pose variations. Experiments show that our model achieves the state-of-the-art results on both intra- and cross-database testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.