Abstract

AbstractIn geotechnical field investigations, cone penetration tests (CPT) are increasingly used for ground characterization of fine‐grained soils. Test results are different parameters that are typically visualized in CPT based data interpretation charts. In this paper we propose a novel methodology which is based on supervised machine learning that permits a redefinition of the boundaries within these charts to account for unique soil conditions. We train ensembles of randomly generated artificial neural networks to classify six soil types based on a database of hundreds of CPT tests from Austria and Norway. After training we combine the multiple unique solutions for this classification problem and visualize the new decision boundaries in between the soil types. The generated boundaries between soil types are comprehensible and are a step towards automatically adjusted CPT interpretation charts for specific local conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.