Abstract

A graph is a relational data structure suitable for representing non-Euclidean structured data. In recent years, graph neural networks (GNN) and their subsequent variants, which utilize deep neural networks to complete graph analysis and representation, have shown excellent performance in various application fields. However, the propagation mechanism of existing methods relies on hand-designed GNN layer connection architecture, which is prone to information redundancy and over-smoothing problems. To alleviate this problem, we propose a data-driven propagation mechanism to adaptively propagate information between layers. Specifically, we construct a bi-level optimization objective and use the gradient descent algorithm to learn the forward propagation architecture, which improves the efficiency of learning different layer combinations in multilayer networks. The experimental results of the model on seven benchmark datasets demonstrate the effectiveness of the proposed method. Furthermore, combining this data-driven propagation mechanism with models, such as Graph Attention Networks, can consistently improve the performance of these models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call