Abstract

BACKGROUNDIn robot-assisted (RA) spine surgery, the relationship between the surgical outcome and the learning curve remains to be evaluated.AIMTo analyze the learning curve of RA pedicle screw fixation (PSF) through fitting the operation time curve based on the cumulative summation method.METHODSRA PSFs that were initially completed by two surgeons at the Beijing Jishuitan Hospital from July 2016 to March 2019 were analyzed retrospectively. Based on the cumulative sum of the operation time, the learning curves of the two surgeons were drawn and fit to polynomial curves. The learning curve was divided into the early and late stages according to the shape of the fitted curve. The operation time and screw accuracy were compared between the stages.RESULTSThe turning point of the learning curves from Surgeons A and B appeared in the 18th and 17th cases, respectively. The operation time [150 (128, 188) min vs 120 (105, 150) min, P = 0.002] and the screw accuracy (87.50% vs 96.30%, P = 0.026) of RA surgeries performed by Surgeon A were significantly improved after he completed 18 cases. In the case of Surgeon B, the operation time (177.35 ± 28.18 min vs 150.00 ± 34.64 min, P = 0.024) was significantly reduced, and the screw accuracy (91.18% vs 96.15%, P = 0.475) was slightly improved after the surgeon completed 17 RA surgeries.CONCLUSIONAfter completing 17 to 18 cases of RA PSFs, surgeons can pass the learning phase of RA technology. The operation time is reduced afterward, and the screw accuracy shows a trend of improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.