Abstract

The first VATS lobectomy was performed in 1991 (1). Since then the implementation of VATS lobectomy has been rather slow. Data from the STS database shows a 32% rate of VATS lobectomies in 2006 (2). But it is only the best academic units that report to the STS database. This percentage is hence probably not representative for all the thoracic units in the USA. The implementation in Europe has been even slower than in the USA. But in the past years interest is rising, and in a recent report from The Society for Cardiothoracic Surgery in Great Britain and Ireland, the percentage of lobectomies performed by VATS has increased from 7% to 14% in just one year (2010). The slow adoption despite the obvious advantages is considered by many to be due to a demanding learning curve. The procedure is considered technically demanding and has the risk of uncontrollable bleeding. The introduction of VATS lobectomies in the surgical community was performed by self taught surgeons experienced in open surgery. The approaches varied from anterior, inferior to posterior, using 2-5 ports (3-6). These surgeons were pioneers and in case of intraoperative difficulties, conversion was their only option. The conversion rate was in many cases rather high (6). In Figure 1, the conversion rate and number of VATS lobectomies in Copenhagen between 1999 and 2011 is illustrated. The conversion rate declines with experience and number of cases per year. In the centres of the pioneers, the next generation learned the technique under guided supervision. The conditions for those surgeons’ learning curves were better due to the possibility of learning under supervision by an experienced VATS surgeon and a better possibility for selecting cases suitable for a training surgeon. Furthermore the surgical outcome was very satisfactory with low conversion and complication rates (7,8). Figure 1 Number of VATS lobectomies performed in Copenhagen 1999 to 2011 and conversions in % Since the introduction of VATS lobectomy in 1991, there has been a substantial improvement in the image quality. The introduction of firstly the digital thoracoscopes and later high definition (HD), has made precise dissection close to major vessels possible. Furthermore, several companies have designed curved instruments tailored to VATS surgery and a continuous improvement in these instruments have made it easier to perform and learn the technique. The quality of staplers has also improved significantly resulting in less air leak and fewer bronchial leaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call