Abstract

A real-time multiprocessor system is proposed for the solution of the tracking problem of mobile robots operating in a real context with environmental disturbances and parameter uncertainties. The proposed control scheme utilizes multiple models of the robot for its identification in an adaptive and learning control framework. Radial Basis Function Networks (RBFNs) are considered for the multiple models in order to exploit the net non-linear approximation capabilities for modeling the kinematic behavior of the vehicle and for reducing unmodeled contributions to tracking errors. The training of the nets and the tests of the achieved control performance have been done in a real experimental setup. The proposed control architecture improves the robot tracking performance achieving fast and accurate control actions in presence of large and time-varying uncertainties in dynamical environments. The experimental results are satisfactory in terms of tracking errors and computational efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.